首页> 外文OA文献 >A parallel computing approach to fast geostatistical areal interpolation
【2h】

A parallel computing approach to fast geostatistical areal interpolation

机译:一种快速地质统计区域插值的并行计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Areal interpolation is the procedure of using known attribute values at a set of (source) areal units to predict unknown attribute values at another set of (target) units. Geostatistical areal interpolation employs spatial prediction algorithms, i.e., variants of Kriging, which explicitly incorporate spatial autocorrelation and scale differences between source and target units in the interpolation endeavor. When all the available source measurements are used for interpolation, i.e., when a global search neighborhood is adopted, geostatistical areal interpolation is extremely computationally intensive. Interpolation in this case requires huge memory space and massive computing power, even with the dramatic improvement introduced by the spectral algorithms developed by Kyriakidis et al. and Liu et al. based on the Fast Fourier Transform (FFT). In this study, a parallel FFT-based geostatistical areal interpolation algorithm was developed to tackle the computational challenge of such problems. The algorithm includes three parallel processes: (1) the computation of source-to-source, and source-to-target covariance matrices by means of FFT; (2) the QR factorization of the source-to-source covariance matrix; and (3) the computation of source-to-target weights via Kriging, and the subsequent computation of predicted attribute values for the target supports. Experiments with real-world datasets (i.e., predicting population densities of watersheds from population densities of counties in the Eastern Time zone, and in the continental U.S.) showed that the parallel algorithm drastically reduced the computing time to a practical length that is feasible for actual spatial analysis applications, and achieved fairly high speed-ups and efficiencies. Experiments also showed the algorithm scaled reasonably well as the number of processors increased, and as the problem size increased.A zipped file of supplementary material is attached (below).
机译:区域插值是使用一组(源)面单位的已知属性值来预测另一组(目标)单位的未知属性值的过程。地统计面插值采用空间预测算法,即克里格的变体,在插值中将空间自相关和源单元与目标单元之间的比例差异明确纳入。当所有可用的源度量都用于插值时,即采用全局搜索邻域时,地统计区域插值的计算量很大。在这种情况下,插值需要巨大的存储空间和巨大的计算能力,即使Kyriakidis等人开发的光谱算法已带来了巨大的进步。和刘等。基于快速傅立叶变换(FFT)。在这项研究中,开发了一种基于FFT的并行地统计面插值算法,以解决此类问题的计算难题。该算法包括三个并行过程:(1)通过FFT计算源到源和源到目标协方差矩阵; (2)源到源协方差矩阵的QR分解; (3)通过克里格法计算源到目标权重,并随后计算目标支持物的预测属性值。使用现实世界的数据集进行的实验(即根据东部时区和美国大陆各县的人口密度预测流域的人口密度)表明,并行算法将计算时间大幅度减少了对实际可行的实际长度空间分析应用程序,并实现了相当高的加速和效率。实验还表明,随着处理器数量的增加以及问题大小的增加,该算法可以合理地扩展,并附加了一个压缩的补充材料文件(如下)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号